Exploring Deep Reinforcement Learning for Holistic Smart Building Control
Xianzhong Ding, Alberto Cerpa, Wan Du • 1/27/2023
Abstract
In recent years, the focus has been on enhancing user comfort in commercial buildings while cutting energy costs. Efforts have mainly centered on improving HVAC systems, the central control system. However, it’s evident that HVAC alone can’t ensure occupant comfort. Lighting, blinds, and windows, often overlooked, also impact energy use and comfort. This paper introduces a holistic approach to managing the delicate balance between energy efficiency and occupant comfort in commercial buildings. We present OCTOPUS, a system employing a deep reinforcement learning (DRL) framework using data-driven techniques to optimize control sequences for all building subsystems, including HVAC, lighting, blinds, and windows. OCTOPUS’s DRL architecture features a unique reward function facilitating the exploration of tradeoffs between energy usage and user comfort, effectively addressing the high-dimensional control problem resulting from interactions among these four building subsystems. To meet data training requirements, we emphasize the importance of calibrated simulations that closely replicate target-building operational conditions. We train OCTOPUS using 10-year weather data and a calibrated building model in the EnergyPlus simulator. Extensive simulations demonstrate that OCTOPUS achieves substantial energy savings, outperforming state-of-the-art rule-based and DRL-based methods by 14.26% and 8.1%, respectively, in a LEED Gold Certified building while maintaining desired human comfort levels.
Citations: 8